Dr. Sven Weinzierl
Research Areas
- Algorithmic research (e.g., interpretable machine learning algorithms)
- Design science research (e.g., trustworthy artificial intelligence systems)
- Behavioral research (e.g., user interaction with explainable and interpretable artificial intelligence)
Teaching
- Seminar Digitale Dienstleistungssysteme an der WiSo
- Forschungsmethodisches Seminar
- Process Analytics (Lecture)
CV
Work Experience
Since 08/2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Researcher | Chair of Digital Industrial Service Systems |
09/2017 – 12/2017 | DATEV eG Working student | Artificial Intelligence / Machine Learning |
05/2017 – 07/2017 | MHP Management- und IT-Beratung GmbH Working student | Predictive Analytics |
03/2015 – 07/2015 | MHP Management- und IT-Beratung GmbH Intern | Business Intelligence |
01/2014 – 10/2014 | DATEV eG Working student | Software Engineering |
08/2011 – 12/2013 | Ribe Holding GmbH & Co. KG Working student | Software Development in Systems Integration |
Education
08/2018 – 04/2022 | Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Doctoral Degree | Information Systems |
04/2016 – 06/2018 | University of Bamberg Master of Science | Information Systems |
10/2012 – 03/2016 | Ansbach University Bachelor of Arts | Information Systems |
09/2008 – 07/2011 | Ribe Holding GmbH & Co. KG IHK Professional Training | IT Merchant |
Publications
2025
- Dunzer S., Zilker S., Weinzierl S., Tang W., Dieckmann F., Stenglein S., Rist J., Matzner M.:
A technology-specific process mining maturity grid for manufacturing and logistics
In: International Journal of Production Research (2025)
ISSN: 0020-7543
DOI: 10.1080/00207543.2025.2451810
URL: https://www.tandfonline.com/doi/full/10.1080/00207543.2025.2451810 - Herchenbach M., Weinzierl S., Zilker S., Schwulera E., Matzner M.:
Adaptive AI-based causal control: Toward an autonomous factory in solder paste printing
In: Computers in Industry (2025)
ISSN: 0166-3615
DOI: 10.1016/j.compind.2025.104256
URL: https://www.sciencedirect.com/science/article/pii/S0166361525000211 - Kruschel S., Hambauer N., Weinzierl S., Zilker S., Kraus M., Zschech P.:
Challenging the performance-interpretability trade-off: An evaluation of interpretable machine learning models
In: Business & Information Systems Engineering (2025)
ISSN: 1867-0202
DOI: 10.1007/s12599-024-00922-2
URL: https://link.springer.com/article/10.1007/s12599-024-00922-2 - Rosenberger J., Wolfrum L., Weinzierl S., Kraus M., Zschech P.:
CareerBERT: Matching resumes to ESCO jobs in a shared embedding space for generic job recommendations (forthcoming)
In: Expert Systems With Applications (2025)
ISSN: 0957-4174
2024
- Kraus M., Tschernutter D., Weinzierl S., Zschech P.:
Interpretable generalized additive neural networks
In: European Journal of Operational Research (2024)
ISSN: 0377-2217
DOI: 10.1016/j.ejor.2023.06.032
URL: https://www.sciencedirect.com/science/article/pii/S0377221723005027 - Weinzierl S., Zilker S., Dunzer S., Matzner M.:
Machine learning in business process management: A systematic literature review
In: Expert Systems With Applications 253 (2024), Article No.: 124181
ISSN: 0957-4174
DOI: 10.1016/j.eswa.2024.124181
URL: https://www.sciencedirect.com/science/article/pii/S0957417424010479 - Zilker S., Weinzierl S., Kraus M., Zschech P., Matzner M.:
A machine learning framework for interpretable predictions in patient pathways: The case of predicting ICU admission for patients with symptoms of sepsis
In: Health Care Management Science 27 (2024), p. 136-167
ISSN: 1386-9620
DOI: 10.1007/s10729-024-09673-8
URL: https://link.springer.com/article/10.1007/s10729-024-09673-8#article-info
2023
- Oberdorf F., Schaschek M., Weinzierl S., Stein N., Matzner M., Flath C.:
Predictive end-to-end enterprise process network monitoring
In: Business & Information Systems Engineering (2023)
ISSN: 1867-0202
DOI: 10.1007/s12599-022-00778-4
URL: https://link.springer.com/article/10.1007/s12599-022-00778-4
2022
- Weinzierl S., Wolf V., Pauli T., Beverungen D., Matzner M.:
Detecting temporal workarounds in business processes – A deep-learning-based method for analysing event log data
In: Journal of Business Analytics 5 (2022), p. 76-100
ISSN: 2573-234X
DOI: 10.1080/2573234X.2021.1978337
URL: https://www.tandfonline.com/doi/full/10.1080/2573234X.2021.1978337
2021
- Stierle M., Weinzierl S., Harl M., Matzner M.:
A technique for determining relevance scores of process activities using graph-based neural networks
In: Decision Support Systems 144 (2021), Article No.: 113511
ISSN: 0167-9236
DOI: 10.1016/j.dss.2021.113511
URL: http://www.sciencedirect.com/science/article/pii/S016792362100021X
2020
- Brunk J., Stottmeister J., Weinzierl S., Matzner M., Becker J.:
Exploring the effect of context information on deep learning business process predictions
In: Journal of Decision Systems (2020), p. 1-16
ISSN: 1246-0125
DOI: 10.1080/12460125.2020.1790183
URL: https://www.tandfonline.com/doi/abs/10.1080/12460125.2020.1790183 - Harl M., Weinzierl S., Stierle M., Matzner M.:
Explainable predictive business process monitoring using gated graph neural networks
In: Journal of Decision Systems (2020), p. 1-16
ISSN: 1246-0125
DOI: 10.1080/12460125.2020.1780780
URL: https://www.tandfonline.com/doi/abs/10.1080/12460125.2020.1780780
2024
- Harl M., Zilker S., Weinzierl S.:
Towards automated business process redesign in runtime using generative machine learning
European Conference on Information Systems (Paphos, Cyprus)
In: Proceedings of the 32nd European Conference on Information Systems 2024 - Ließmann A., Wang W., Weinzierl S., Zilker S., Matzner M.:
Transfer learning for predictive process monitoring
European Conference on Information Systems (Paphos, Cyprus)
In: Proceedings of the 32nd European Conference on Information Systems 2024 - Ließmann A., Zilker S., Weinzierl S., Sukhareva M., Matzner M.:
Predicting customer satisfaction in service processes using multilingual large language models
Hawaii International Conference on System Sciences (Waikiki, Honolulu, Hawaii)
In: Proceedings of the 57th Hawaii International Conference on System Sciences 2024 - Weinzierl S., Zilker S., Brunk J., Revoredo K., Matzner M., Becker J.:
Context-aware explanations of accurate predictions in service processes
Hawaii International Conference on System Sciences (Waikiki, Honolulu, Hawaii)
In: Proceedings of the 57th Hawaii International Conference on System Sciences 2024 - Weinzierl S., Zilker S., Zschech P., Kraus M., Leibelt T., Matzner M.:
How risky is my AI system? A method for transparent classification of AI system descriptions by regulated AI risk categories
International Conference on Information Systems (Bangkok, Thailand)
In: Proceedings of the 45th International Conference on Information Systems 2024
URL: https://open.fau.de/bitstreams/092b306d-86fb-420d-8ba1-57172d11611a/download
2023
- Arnold S., Yesilbas D., Weinzierl S.:
Driving context into text-to-text privatization
Annual Meeting of the Association for Computational Linguistics (Toronto)
In: Association for Computational Linguistics (ed.): Proceedings of the 3rd Workshop on Trustworthy Natural Language Processing 2023
DOI: 10.18653/v1/2023.trustnlp-1.2
URL: https://aclanthology.org/2023.trustnlp-1.2 - Arnold S., Yesilbas D., Weinzierl S.:
Guiding text-to-text privatization by syntax
Annual Meeting of the Association for Computational Linguistics (Toronto)
In: Association for Computational Linguistics (ed.): Proceedings of the 3rd Workshop on Trustworthy Natural Language Processing 2023
DOI: 10.18653/v1/2023.trustnlp-1.14
URL: https://aclanthology.org/2023.trustnlp-1.14/ - Drodt C., Weinzierl S., Matzner M., Delfmann P.:
Predictive Recommining: Learning relations between event log characteristics and machine learning approaches for supporting predictive process monitoring
International Conference on Advanced Information Systems Engineering (Zaragoza, 12. June 2023 - 16. June 2023)
In: Proceedings of the 35th International Conference on Advanced Information Systems Engineering Forum 2023
DOI: 10.1007/978-3-031-34674-3_9 - Zilker S., Weinzierl S., Zschech P., Kraus M., Matzner M.:
Best of both worlds: Combining predictive power with interpretable and explainable results for patient pathway prediction
European Conference on Information Systems (Kristiansand, 13. June 2023 - 16. June 2023)
In: Proceedings of the 31st European Conference on Information Systems 2023
DOI: 10.25593/open-fau-1123
URL: https://open.fau.de/bitstreams/c8ea3d7e-7fb9-4932-9828-501af75d1f89/download
2022
- Cabrera Pérez L., Weinzierl S., Zilker S., Matzner M.:
Text-aware predictive process monitoring with contextualized word embeddings
International Conference on Business Process Management (Münster)
In: Proceedings of the BPM 2022 International Workshops 2022
DOI: 10.1007/978-3-031-25383-6_22 - Weinzierl S., Bartelheimer C., Zilker S., Beverungen D., Matzner M.:
A method for predicting workarounds in business processes
Pacific Asia Conference on Information Systems (Taipei-Sydney, 5. July 2022 - 9. July 2022)
In: Proceedings of the 25th Pacific Asia Conference on Information Systems 2022 - Zschech P., Weinzierl S., Hambauer N., Zilker S., Kraus M.:
GAM(e) changer or not? An evaluation of interpretable machine learning models based on additive model constraints
European Conference on Information Systems (Timisoara, 5. July 2022 - 9. July 2022)
In: Proceedings of the 30th European Conference on Information Systems 2022
2021
- Drodt C., Weinzierl S., Matzner M., Delfmann P.:
The recomminder: A decision support tool for predictive business process monitoring
International Conference on Business Process Management (Rom)
In: Proceedings of the BPM 2021 Demonstration & Resources Track, Best BPM Dissertation Award, and Doctoral Consortium 2021 - Stierle M., Brunk J., Weinzierl S., Zilker S., Matzner M., Becker J.:
Bringing light into the darkness - A systematic literature review on explainable predictive business process monitoring techniques
European Conference on Information Systems (Marrakesch)
In: Proceedings of the 29th European Conference on Information Systems 2021 - Weinzierl S.:
Exploring gated graph sequence neural networks for predicting next process activities
International Conference on Business Process Management (Rom)
In: Proceedings of the BPM 2021 International Workshops. 2021
DOI: 10.1007/978-3-030-94343-1_3 - Weinzierl S., Dunzer S., Tenschert J., Zilker S., Matzner M.:
Predictive business process deviation monitoring
European Conference on Information Systems (Marrakesch)
In: Proceedings of the 29th European Conference on Information Systems 2021
2020
- Marx E., Stierle M., Weinzierl S., Matzner M.:
Closing the gap between smart manufacturing applications and data management
International Conference on Wirtschaftsinformatik (WI) (Potsdam, 9. March 2020 - 11. March 2020)
In: Proceedings of the 15th International Conference on Wirtschaftsinformatik (WI) 2020
DOI: 10.30844/wi_2020_u1-marx
URL: https://library.gito.de/2021/07/wi2020-community-tracks-9/ - Nguyen A., Chatterjee S., Weinzierl S., Schwinn L., Matzner M., Eskofier B.:
Time matters: Time-aware LSTMs for predictive business process monitoring
International Conference on Process Mining (Padua, 4. October 2020 - 9. October 2020)
In: Proceedings of the ICPM 2020 International Workshops 2020
DOI: 10.1007/978-3-030-72693-5_9 - Weinzierl S., Dunzer S., Zilker S., Matzner M.:
Prescriptive business process monitoring for recommending next best actions
International Conference on Business Process Management (Sevilla, 13. September 2020 - 18. September 2020)
In: Proceedings of the 18th International Conference on Business Process Management Forum 2020
DOI: 10.1007/978-3-030-58638-6_12
URL: https://link.springer.com/content/pdf/10.1007/978-3-030-58638-6_12.pdf - Weinzierl S., Stierle M., Zilker S., Matzner M.:
A next click recommender system for web-based service analytics with context-aware LSTMs
Hawaii International Conference on System Sciences (Grand Wailea, Maui, Hawaii, 7. January 2020 - 10. January 2020)
In: Proceedings of the 53rd Hawaii International Conference on System Sciences 2020
DOI: 10.24251/HICSS.2020.190
URL: http://hdl.handle.net/10125/63929 - Weinzierl S., Wolf V., Pauli T., Beverungen D., Matzner M.:
Detecting workarounds in business processes — A deep learning method for analyzing event logs
European Conference on Information Systems (Marrakesch, 15. June 2020 - 17. June 2020)
In: Proceedings of the 28th European Conference on Information Systems 2020
URL: https://www.researchgate.net/publication/341180737_DETECTING_WORKAROUNDS_IN_BUSINESS_PROCESSES_-_A_DEEP_LEARNING_METHOD_FOR_ANALYZING_EVENT_LOGS - Weinzierl S., Zilker S., Brunk J., Revoredo K., Matzner M., Becker J.:
XNAP: Making LSTM-based next activity predictions explainable by using LRP
International Conference on Business Process Management (Sevilla, 13. September 2020 - 18. September 2020)
In: Proceedings of the BPM 2020 International Workshops. 2020
DOI: 10.1007/978-3-030-66498-5_10 - Weinzierl S., Zilker S., Stierle M., Park G., Matzner M.:
From predictive to prescriptive process monitoring: Recommending the next best actions instead of calculating the next most likely events
Internationale Tagung Wirtschaftsinformatik (Potsdam, 8. March 2020 - 11. March 2020)
In: Proceedings of the 15th International Conference on Wirtschaftsinformatik 2020
DOI: 10.30844/wi_2020_c12-weinzierl
URL: https://library.gito.de/open-access-pdf/C12_Prescriptive_process_monitoring_-_a_technique_for_determining_next_best_actions_resub.pdf
2019
- Weinzierl S., Revoredo K., Matzner M.:
Predictive business process monitoring with context information from documents
European Conference on Information Systems (Stockholm, 8. June 2019 - 14. June 2019)
In: Proceedings of the 27th European Conference on Information Systems 2019
URL: https://www.researchgate.net/publication/333245929_PREDICTIVE_BUSINESS_PROCESS_MONITORING_WITH_CONTEXT_INFORMATION_FROM_DOCUMENTS
2024
- Ackermann L., Käppel M., Marcus L., Moder L., Dunzer S., Hornsteiner M., Ließmann A., Zisgen Y., Empl P., Herm LV., Neis N., Neuberger J., Schaschek M., Weinzierl S., Wörderhoff N., Jablonski S., Koschmider A., Kratsch W., Matzner M., Rinderle-Ma S., Röglinger M., Schönig S., Winkelmann A.:
Recent Advances in Data-Driven Business Process Management
(2024)
Open Access: https://arxiv.org/abs/2406.01786
URL: https://arxiv.org/abs/2406.01786
(online publication)